foam

When it comes to brewing delicious beer, there are few aspects more important than the yeast. A healthy fermentation allows the malt, hops, and adjuncts to shine. Pitching the right amount of healthy cells helps ensure that the finished beer has the intended alcohol, expected residual sweetness, and appropriate yeast character.  

Over the last four years at Sapwood Cellars we've slowly improved our yeast handling. We've noticed improved fermentation consistency, and better tasting beers. Most of our process is excessive for a homebrewer, but it might give you some ideas!

Harvesting Yeast

We harvest yeast from moderate gravity beers when possible as these cells are less stressed and healthier as a result. Our general rhythm is to brew a pale ale with a fresh pitch, and harvest from that tank for an IPA and DIPA the following week. Once the pale ale fermentation is complete (repeated gravity readings, and no diacetyl or acetaldehyde sensory) we can and soft-crash to 56-58F (13-14C). Cold and dissolved CO2 encourage the yeast to settle out. Specific temperature and time are strain and tank dependent, but that works for most of the English-leaning strains we use (Boddington's, Conan, Whitbread, and the Thiolized-variants).

Once the beer has been cold for 24 hours, we attach a 1/2 bbl brink to the bottom of the tank and pasteurize through the line and brink with 180F (82C) water from our on-demand. 25 minutes hot ensures there aren't any stray microbes that will be passed onto the subsequent batches. After pushing out the water with CO2 pressure we spray the brink with cold water then pressurize it and the tank to ~10 PSI. 

We then dump about a gallon (4L) from the T until the yeast looks good (creamy, off-white) and then begin collecting into the brink. You don't need to dump a large volume of yeast. By keeping steady pressure on the tank and slowly releasing pressure on the brink through the valve at the top we ensure that the yeast won't come out of the cone too quickly (which could punch through pulling in more beer than yeast) and won't foam up in the brink. It takes 10-15 minutes to fill the brink. Usually we are able to collect 110-130 lbs (50-60 kg) before yeast starts coming out the top of the brink. 

We collect yeast before dry hopping to avoid having hops mixed in with the yeast. We also prefer the "less rough" flavor we achieve by dry hopping cold. If you dry hop early-mid fermentation and want to harvest, drop as much of the hops out as you can before crashing and harvesting.

Yeast Storage

Whenever possible we pitch within 72 hours of harvest. Larger yeast cultures generate more heat and thus tend to lose viability more rapidly. Store the yeast as cold as possible, which for us is ~36F (2C) in our walk-in. Ideally that would be closer to 32F (0C) to further slow its metabolism. Shake twice a day to dissipate hot-spots and vent down the pressure to knock-out CO2. If storing the yeast for more than a few days, attach a blow-off line to prevent pressure from building. 

There are studies about various additives for maintaining high yeast viability. We've added phosphate buffer to prevent a drastic pH drop. It's difficult to tell from a single data point, but viability dropped from 95% to 89% after a week of storage. We've seen closer to 10% reductions the handful of times we've stored yeast that long previously.  

We generally won't harvest and repitch beyond three generations (although recently we went to five). That's because with our limited number of tanks, variety of yeast strains, and canning schedule we'd eventually have to hold onto yeast for a couple of weeks before pitching or harvest from a strong beer. 

Determining Cell Count and Viability

There are plenty of successful brewers who pitch a standard weight by barrel/gravity, but knowing how many live cells you actually have is a great way to improve consistency. It's especially valuable if you use a variety of strains or want to bring in a new strain. Our harvests of the same strain can vary by as much as three times in terms of live cells per g of slurry (~.5-1.5 billion cells). The cost of all of the equipment required is ~$500, less than a single commercial 10 bbl yeast pitch from some labs. 

Start by shaking the brink to homogenize the culture. Then run a cup of yeast out, dump it (to avoid counting the cells packed around the port) and then pull a sample. The next step is to dilute the culture to a "workable" concentration - 1:100 for us. Too many cells packed together makes for a culture that is impossible/laborious to count, while too few raises the chances luck will throw-off the count. For a long time I diluted by volume, performing two sequential 10X dilutions with a micropipette. This had two drawbacks. First getting an accurate volume of yeast slurry is tricky because it is foamy and has small bits of trub that can plug-up the pipette. Second, we pitch by weight, so there was always some estimation when it came to converting the volume to a weight or the extra step of determining the physical density of the slurry by mixing with water in a graduated cylinder on a scale. What we do now is dilute by weight, which gives us cells per gram rather than cells per milliliter.

Our scale is accurate to .2 g, so weighing 1 g of yeast into 99 g of water has a ~20% margin of error. As a result I do 490 g of water with 5 g of the yeast slurry. This reduces the maximum margin of error to ~4%. After pouring the diluted culture back and forth to mix, I take 9.9 mL of the diluted culture with the micropipette and add .1 mL of a stock dye solution of Erythrosin B and phosphate buffer (1 g in 50mL of buffer). This results in a total dilution of 100X. You could go even further, a 10X dilution by weight (50 g yeast with 450 g of water) followed by a 10X dilution by volume (1 mL of the diluted culture with 8.9 mL water and .1 g of dye). Live cells are able to expel the Erythrosin B so they won't be stained, meaning any red yeast cells are dead. You can use a variety of other stains, but Erythrosin B is a food coloring and much safer to handle than methylene blue or trypan blue. Here's a post from Escarpmant Labs on using it inspired by my Tweet (which was in turn inspired by this).

Luckily the Boddingtons-type strain we use for most of our batches isn't "excessively" flocculent. When we fermented a run with Whitbread we ran into issues with the cells being too clumpy to count. Luckily BrewKaiser has a whole post on additions you can add to help. Phosphoric acid worked OK, but a local brewer suggested disodium EDTA, which I plan to buy before we do another run with a similar strain. 


Next, place a couple drops on the diluted culture a hemocytometer, apply the slide cover, and stick it under a microscope (we have an Omax). Count the live and dead cells in five squares (each made up of 25 small squares) - four corners, and center. This provides a large enough sample size to avoid undue randomness. A small tally counter helps keep track. The standard rule is to count cells touching the left and top lines, but not the right or bottom. Count connected cells as two only if the daughter cell is more than half the size of the mother. Then I plug the totals into Inland Island's Yeast Cell Count Calculator. Usually our harvests are 80-90% viable off a fresh pitch, and they tend to go up from there on subsequent generations (90-95%). If your viability isn't great it could either be that the yeast isn't getting enough nutrients/oxygen, your initial pitching rate was too high or low, or that you are waiting too long to harvest.  

There are automated solutions for yeast counting, but with some practice the whole processes will take less than 10 minutes.  



Pitching Yeast

To pitch, we attach the brink to a T inline during knock-out. With the brink on a scale we use CO2 to slowly push in the desired weight of yeast (calculated based on the cell count, wort gravity, and volume). We pitch during knock-out so the yeast mixes with the aerated wort as it goes into the fermentor. White Labs advocates using a pump to pitch their fresh yeast inline to achieve better mixing with the wort. Best practice is to do another cell count off the tank once knock-out is complete to validate your process (we did it a few times, but now trust our approach).

When we started brewing more double batches to fill our 20 bbl tanks, we were pitching enough cells for 20 bbls along with the first 10 bbls of wort. Our thought process was that the yeast wouldn't do much in the 3-4 hours before the second half of the wort went in. However, we found our fermentations were less reliable, often dragging towards terminal gravity, and the yeast from those batches had much lower viability than expected. Both of these issues improved significantly once we switched to pitching only enough cells for the initial knock-out volume. This allows for more growth and thus a higher proportion of younger yeast cells. 

Hopefully this overview of our process is helpful for someone starting a new craft brewery, or looking to take their yeast management to the next level. As with anything in brewing, the more variables you can track and control the more consistency you'll have in your results. Yeast management isn't a "fun" topic, but it is one of the simplest things a brewery can do to increase consistency, improve flavor, and save money!





0 Comments
Split Test Batch Rye

I have nothing against brewing to-style. You can make magnificent and delicious beers by using ingredients from a single region with the goal of a classic balance. That isn't who I am as a brewer though. The recipe for Sapwood Cellars' False Dragon is the sort that I'm passionate about. We selected ingredients from all over the globe to create a flavors and aromas that aren't authentic to any one tradition. What I wanted was an earthy-crisp malt flavor, a white-winey hop aroma (for less money than Nelson Sauvin), and a subtle spicy and fruity-boost from the yeast without getting in the way. That required malts from America and England, hops from America and Germany, and yeast from England and Belgium.

Scott adding Centennial hops to the whirlpool

I'd been experimenting with the hop bill for a few months to get the ratio right, and eventually settled on 2:1 in favor of Mosaic. After a few test batches, Scott and I have embraced adding less expensive hops on the hot-side (Cascade, Columbus, Chinook, Centennial etc.) with the more aromatic and expensive varieties saved for the fermentor. I wanted to split my homebrewed test batch to compare S-04 alone against S-04 with 8% T-58. As with Ziparillo, dry yeast is cost-effective especially if you can't repitch thanks to early or mid-fermentation dry hopping. Belgian strains have shown heightened biotranformation abilities is some studies, so it seemed like a good candidate for double dry-hopping.

Dry yeast pitched into a 10 bbl batch

For the 10 bbl batch we decided to fill-in a gap in our range when the first batch of Rings of Light (our Citra dry-hopped hazy pale ale) came in under-alcohol at 4.8% thanks to lower-than-expected efficiency. In effect the two recipes switched places with False Dragon becoming the "bigger" pale ale at 5.3% rather than the 4.7% of the test batch. Our attenuation has been lower than expected across the board for our first five batches too. We're still trying to figure out the cause given it has happened with multiple yeast strains - likely mash related. Luckily our hop flavor and aroma have both been wildly better than either Scott or I have been able to achieve at home, I'm sure surface-to-volume ratio plays a role.

Your first chance to try this beer is at the Sapwood Cellars grand opening, Noon-10 PM on Saturday 9/29. We'll be open Thursday-Friday 4-10 PM and Saturdays Noon-10 PM from then on. Stop in, drink a beer, say hello!

The name False Dragon come from The Wheel of Time series of books by Robert Jordan. My commute has gone from 20 minutes on the subway to my desk job to ~40 minutes by car. Audio books are my new friend. While I'm sure brewing podcasts would be a more productive use of my time, after 12 hours brewing it is nice to have a little escapism.

Test batch False Dragon with S-04

False Dragon S-04

Smell – Had to go for a fresh pour after taking photos as it had gone a hint skunky after five minutes in the sun… Nose is a fresh “true” hop aroma to the Mosaic and Hallertau Blanc. White wine, but also some blueberry and green/herbaceous. Certainly Nelson-reminiscent, but a unique character as well.

Appearance – Pale yellow, pleasantly hazy. Good head and lacing, but the foam itself feels airy on the tongue. I guess I’ve gotten used (and miss) to the contribution of chit malt.

Taste – A firm amount of bitterness in the finish, but it doesn’t linger. Light and bright with the tropical-fruity hops starring. Rye doesn’t really make a strong showing, although I’ve always found it more subtle than some others taste.

Mouthfeel – The rye helps prevent it from being watery, but it is a summery pale ale. Glad we ended up a little higher OG/FG on the big batch. Medium carbonation, nice for a lighter beer.

Drinkability & Notes – A pleasant session IPA. The Mosaic and Hallertau Blanc work better together than apart.

Changes for Next Time – 10% chit in place of the base malt wouldn’t hurt. Could certainly up the rye too for a bigger contribution.

Test batch False Dragon with S-04 and T-58

S-04 and T-58

Smell – More rounded, less grassy-distinct hop aroma. Tropical, juicy, inviting. The green flavors are now more honeydew melon. Impossible to say how much of that is actual hop chemical reaction, or synergistic between the hops and esters. Lightly bready.

Appearance – Looks similar in terms of head, color, and clarity.

Taste – Lower perceived bitterness. A more saturated/integrated fruity hop flavor. Passionfruit especially. I think this is the more approachable and interesting beer, and distinct from the other English-only fermentation we are doing (using RVA Manchester). Slightly elevated phenols, but much lower than from the WB-06 in Ziparillo.

Mouthfeel – Slightly creamier (perhaps just the lower perceived bitterness?), identical carbonation.

Drinkability & Notes – I was able to identify these pretty easily in a blind tasting. It is amazing how much impact such a small amount of yeast can make.

Changes for Next Time – We decided to back down the T-58 4.4% of the blend to allow a bit more of that fresh/distinct hop character through. Other than the higher gravity, the recipe was otherwise unchanged for the 315 gallon batch! We’ll probably up the rye for batch #2 now that we know we can handle higher percentages of high beta-glucan huskless grains.

False Dragon - Test Batch

Batch Size: 11.00 gal
SRM: 4.1
IBU: 30.0
OG: 1.046
FG: 1.012/1.012
ABV: 4.7%
Final pH: 4.43/4.49
Brewhouse Efficiency: 72%
Boil Time: 60 mins

Fermentables
-----------------
75.6% - 17 lbs Rahr 2-Row Brewer's Malt
14.4% - 3.25 lbs Briess Rye Malt
10.0 % - 2.25 lbs Crisp Floor Malted Maris Otter

Mash
-------
Mash In - 45 min @ 156F

Hops
-------
8.00 oz Centennial (Pellet, 7.20%) @ 30 min Steep/Whirlpool
6.00 oz Mosaic (Pellet, 12.25%) @ Dry Hop Day 3
3.00 oz Hallertau Blanc (Pellet, 10.50%) @ Dry Hop Day 3
6.00 oz Mosaic (Pellet, 12.25%) @ Dry Hop Day 7
3.00 oz Hallertau Blanc (Pellet, 10.50%) @ Dry Hop Day 7

Other
-------
1 Whirlfloc Tablet @ 5 mins

Water
-------
18 g Calcium Chloride
12 g Gypsum (Calcium Sulfate)
6 tsp Phosphoric Acid 10%

Calcium
Chloride
Sulfate
Sodium
Magnesium
Carbonate
150
150
150
15
10
90

Yeast
-------
11.5 g SafAle S-04 English Ale
or
11.5 g SafAle S-04 English Ale
1 g SafBrew T-58 Specialty Ale

Notes
-------
Brewed 8/19/18

Mash pH = 5.44 (at mash temp) after acid additions.

Collected 14.5 gallons of 1.046 runnings.

Added heat to maintain a whirlpool temperature of 200F.

Chilled to 64F. Half with 1 g of T-58 and 11 g of S-04, and half with only 11 g of S-04. Left at 62F ambient to begin fermentation after shaking to aerate.

69F internal temperature during peak fermentation.

8/22 Dry hopped each with 3 oz of Mosaic and 1.5 oz of Hallertau Blanc.

8/27 Second dry hop for both.

9/1 Kegged both, 1.012, moved to fridge to chill.

9/2 Hooked up to gas and tapped to remove sludge. S-04 batch clogged poppet a few times.

I get a commission if you buy something after clicking the links to MoreBeer/Amazon/Adventures in Homebrewing/Great Fermentations!

Brite tank sample of False Dragon

0 Comments
Squeeze that grain bag!If you've followed this blog, you've likely picked-up on my my interest in low-alcohol hoppy beers. For example 3.6% ABV Vienna IPA2.3% Session NEIPA, all the way down to this 2.1% Nelson Wheat-IPA. I'm always looking for new techniques to shoehorn the body, malt flavor, and balance associated with IPAs into a smaller package.

This batch was inspired by a couple of rye-heavy table beer that James Spencer shared with me (video of his process). Rye malt is a powerhouse of mouthfeel, and meshes well with hoppy beers. I paired it with Golden Naked Oats in an attempt to infuse more malt flavor and perceived sweetness.

For a grain bill with more beta glucan than husk the only option is brew in a bag (BIAB)... or start buying rice hulls by the sack. I further enhanced the malt flavor by using a 165F (74C) mash to allow me to add more grain without increasing the ABV. Add to that a quick 30 minute boil, and it was an easy brew day.

I've used Mosaic many times, but Hallertau Blanc only once in this Alsatian Saison. I've always associated the flavors I get from these two varieties with that of Nelson Sauvin. It all made sense when I read all three contain the same thiol 3S4MP, which is also a signature of Sauvignon blanc wine and provides a grapefruit-rhubarb aroma. With the increasing demand for Nelson, it made sense to see if the other two in combination could serve as a passable replacement.

The old laptop I wrote American Sour Beers on...As if this beer didn't need another twist, it was my first time attempting to use sound waves to speed dry hop extraction. I'm not the first one to pump decibels into beer (Cambridge Brewing, Green Man, and Baladin all have), but I'm not aware of anyone doing it specifically for dry hopping. When you add pellets they have a tendency to either float, or sink to the bottom. Either way it isn't ideal for extraction. Playing 80 Hz through an old USB speaker  vibrated the BrewBucket pretty well, hopefully increasing the beer-hop contact. Hard to know how much it accomplished without a control...

Look for my Brew Your Own article about Table Beers in the October issue where I go more into depth on this batch and an ESB that I mashed at 70F!

Rye Table Pale Ale (RTPA) 

Smell – Good Nelson-reminiscent gooseberry Sauvignon blanc wininess from the hops. Herbal notes too from the Hallertau Blanc. Without the alcohol as a vector for the dry hops, the aroma doesn’t pop - or maybe the sound waves drove out CO2 and aromatics with it. A light graininess fills in the gaps in the hop aroma.

Appearance – Hazy without particulate after three weeks cold. Ua-pale, almost looks like a cloudy Berliner weisse. Head retention is pretty good for such a small beer, but the bubbles are bigger and less stable than the dense foam of my NEIPAs.

Taste – Hop flavor is stronger than the nose. Similar white wine flavors, but with a subtle berry flavor from the Mosaic. Mid-palate is a tad lacking in terms of malt flavor, but the hops linger into the finish covering for it. Bitterness is present, but restrained, just about right for this lean beer. Tastes like beer rather than a malt soda.

Mouthfeel – The body is remarkable for a beer under 2% ABV - a friend called it "creamy" in a blind tasting. Moderate carbonation doesn’t disrupt.

Drinkability & Notes – I’m not sure I’ve brewed a beer that I want to drink more of in a session. One of those that doesn’t wow unless you know what is special about it.

Changes for Next Time – Would be interesting to add some light crystal malt and/or Vienna to try to increase the malt flavor. The body is there. For the hops I might go 2:1 in favor of Mosaic and add a second dry hop to try to enhance the aroma.

Recipe

Batch Size: 5.50 gal
SRM: 5.6
IBU: 44.5
OG: 1.029
FG: 1.015
ABV: 1.84%
Final pH: 4.52
Brewhouse Efficiency: 73%
Boil Time: 30 Mins

Fermentables
-----------------
72.4% - 5.25 lbs Briess Rye Malt
27.6% - 2.0 lbs Simpsons Golden Naked Oats

Mash
-------
Mash In - 45 min @ 165F

Hops
-------
2.00 oz Hallertau Blanc (Pellets, 10.50% AA) @ 185F for 30 min Whirlpool
2.00 oz Mosaic (Pellets, 12.25% AA) @ 185F for 30 min Whirlpool
2.00 oz Hallertau Blanc (Pellets, 10.50% AA) @ Dry Hop Day 2
2.00 oz Mosaic (Pellets, 12.25% AA) @ Dry Hop Day 2

Water
-------
10 g Calcium Chloride @ Mash
3 tsp Phosphoric Acid 10% @ Mash

Calcium
Chloride
Sulfate
Sodium
Magnesium
Carbonate
100
170
30
10
5
40

Other
-------
.5 Whirlfloc Tablet @ 5 min

Yeast
-------
SafAle English Ale S-04

Notes
-------
Brewed 6/9/18 with Spencer (Sapwood's tasting room manager)

BIAB.

Mashed with 4 gallons distilled, 2 gallons of DC tap.

Topped up with 2 gallons of DC and .5 gallons of distilled.

Cool to 185F for 30 whirlpool addition.

Chilled to 75F. Moved to fridge set to 45 for a few hours to cool. Pitched at 62F, set to 68F to allow to warm.

Dry hopped after 48 hours. Hit with 80 hz for 24 hours immediately after adding hops.

Kegged 6/15/18 FG 1.014, 52% AA (1.84% ABV).

I get a commission if you buy something after clicking the links to MoreBeer/Amazon/Adventures in Homebrewing/Great Fermentations!
0 Comments